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Abstract 

Text analytics can provide a wide breadth of valuable 

information, including summarization, clustering, classification, 

and categorization to enable better functional interaction with the 

text. This includes improved search, translation, optimization, and 

learning. In this paper, we describe advanced analytical 

approaches used to enable improved utility of the text documents 

and information later. This adds value to the preservation of the 

information and provides new access points to the information. We 

emphasize the role of functional approaches to testing and 

configuration of these systems, with the view that the primary role 

of archiving is to make the content as re-usable, re-purposeable, 

and discoverable as possible. 

Introduction 
Text analytics consist at the most elementary level of the 

statistics about a text element, which includes the word count, the 

word histogram, and the word frequency histogram. Most text 

documents of value are related to other—sometimes many other—

documents, and so analytics describing the relative frequency of 

terms in a document compared to its peers are important for 

defining key words (tagging, labeling, indexing), search-

responsive terms (query terms), and compressed versions of the 

documents (key words, summary, etc.). 

Document text is initially analyzed for part of speech tagging 

and compound relationships (compound nouns, auxiliary verbs, 

etc.), since the part of speech of words significantly impacts their 

utility in downstream analytics such as summarization, clustering, 

classification, and categorization. 

With these statistical analytics in place, we can then proceed 

with the more functional analytics of search, translation, 

optimization, and learning. Generation of analytics such as is aided 

by a hybrid, ensemble, or other combinatorial approach in which 

two or more effective analytics processes are used simultaneously, 

and their outputs combined to form a better “consensus”. 

Additional value to the preservation of the information is provided 

through these methods. Also, since they encompass capabilities of 

two or more knowledge-generating systems, they can create a 

“superset” of access points to the data generated. We also describe 

the role of functional approaches in the testing and configuration of 

these systems. 

Linguistics and NLP 
One of the first, and obvious, connections between linguistics 

and NLP (natural language processing) is the choice of algorithms 

for the primary NLP tasks (part of speech tagging, categorization, 

word sense, N-grams, collocations, etc.) based on the language 

identified [1]. For example, articles are substantially different in 

comparing English and Japanese. 

A functional approach to linguistics and NLP is an iterative 

refinement algorithm. First the language family can be identified 

from the character set. Next, the individual language is identified 

from the word counts. The dialect, if appropriate, can be identified 

from the rare terms within the language that occur with 

disproportionately high frequency in the document. This might 

include regional idiomatic expressions as well as variant spellings. 

Finally, jargon and slang dictionaries can be used to assign the 

document to specific specialties, trades, or other subcultures. 

Summarization 
Summarization is a powerful analytic in its own right, serving 

as a proxy for the document it compresses. Effective compressing 

leads to a concept we herein designate compressive substitution. 

By compressive substitution we mean a level of compression that 

does not result in significant loss of functionality. If the 

summarized (or otherwise compressed) content functions as well 

as the original text, then we have a compression value of 1.0 In 

some cases, such as the idealized curve shown in Figure 1, 

compressive substitution may exceed the performance of the 

original content, particularly if we are measuring normalized 

performance such as the product of accuracy and efficiency. 

Finding the same content in half the time might give a value of 2.0 

for compressive substitution. In some search processes, the 

accuracy alone may improve because the summarized content 

provides more germane input than the complete documents, 

allowing more accurate search. 

 

 
Figure 1. Idealized functional performance curve, where the functional 
performance peaks at a particular level of summarization. The solid line (blue 
in original) represents the performance of the summarized content in a 
functional task (e.g. search accuracy multiplied by search speed). The 
functional performance axis is usually nonzero at the asymptotic value. Please 
see text for details. 

Thus, compressive substitution can be an absolute (directly 

comparing the accuracy, precision, recall, throughput, robustness, 

etc. of summarized and original content) or relative (comparing the 

product of accuracy, precision, etc., with throughput). Regardless 

of how we define the compressive substitution, the main point is 

that we can decide how large a percentage of the original content 

to include in the summary based on how well the so-summarized 

content performs in its downstream use cases. We now apply these 

principles in a few example applications. 



 

 

Clustering, Classification and Categorization 
Clustering, classification, and categorization are sometimes 

used relatively interchangeably. However, here we consider 

clustering to correspond to associating content with content very 

much like it; classification as deciding what type of content is in 

multiple clusters, often when compared to a pre-defined set of 

classes; and categorization to be the post-classification step 

wherein the clustered and classified content is tagged. These tags 

in turn can be used as an automatically-generated set of search 

queries, indices, etc. 

Summarized content can be used as the primary content for 

clustering, classification, and categorization. The performance of 

the system using summarized content can be compared to the 

performance on the original content, generally resulting in a curve 

similar to Figure 1, although the asymptotic behavior for absolute 

measurements will meet the dotted line as the percent of content 

increases, of course (since it becomes the original content with 

summarization percentage = 100%). Importantly, different 

summarization strategies [2] can be employed in addition to 

different percentages, meaning that we can develop a family of 

curves of the type shown in Figure 1 in order to functionally 

optimize our summarization. Note that we might have a different 

(strategy, percentage) for each function—i.e. a separate one for 

clustering, classification, categorization, and query set generation. 

Not surprisingly, the percentage of each document needed for 

summarization is a function of overall corpus size (generally 

positive correlation), breadth of materials in the corpus (generally 

negative correlation), and type of summarization used (extractive 

generally works better than semantic summarization for these 

tasks). 

Translation 
Summarization and its counterpart query set generation can be 

used to quantitatively grade the accuracy of multiple translation 

engines [3]. Here, there is definitely an optimal percentage of 

summarization that leads to the best overall behavior as determined 

by equivalence of query behavior when comparing the source and 

translated documents. For this purpose, the summarization is an 

auxiliary function, not optimized for its own utility but instead 

used to determine the behavior of the translated queries together 

with the translated corpus. The best translator is deemed to be the 

one that provides a translated {document, query set} that behaves 

the most similarly to the {document, query set} of the original 

language text. 

Optimization 
Optimization can be tied to absolute or relative objective 

functions. Examples already mentioned include optimizing the 

summarization strategy and percentage to provide optimal: 

 

(1) Clustering 

(2) Classification 

(3) Categorization 

(4) Tagging/indexing 

(5) Query set generation 

(6) Translation 

 

However, virtually any other text processing task—including 

those that occur “upstream” of these six, can be performed using 

summarized representations of the documents. While part of 

speech tagging and word sense analytics are usually expected to 

perform better on larger text data sets, it is sometimes possible to 

get better performance on the difficult-to-analyze portions of a 

corpus on compressed text content (that is, summaries). This seems 

contradictory, but the fact that only the most salient text is 

analyzed means that the NLP algorithms might fight unusual word 

usage, including non-traditional word sense, better than if the less 

salient portions of the document “overwhelm” the analytics. That 

is, slang, jargon, and other neologisms are concentrated in the 

summaries in comparison to the document as a whole, and so 

provide a higher density for these linguistic “anomalies” than does 

the entire document. 

Learning 
One of the main challenges of producing an archival 

representation of a corpus is to encourage its reuse. Tagging, 

indexing, clustering, and classification all provide additional 

access points for the corpora. From a utility standpoint, however, 

we would like large corpora to be useful for training and learning 

purposes. Learning is about the proper sequencing of many 

documents to enhance understanding and retention by the reader. 

As such, we would generally like to know which document to 

provide a reader once she has finished with a specific document. 

We need to have the right amount of overlap for reinforcement, 

and the right amount of non-overlap to encourage the ingestion of 

new concepts and facts. 

Summarization is a spatial representation of a corpus. Each 

document that is summarized can remain so summarized, so long 

as proper testing and optimization have been employed, and each 

summary occupies a spot in the overall mapping of the corpus 

content. Learning, however, is concerned with the temporal 

representation of the corpus. When we have completed a 

document, what is the next one to read? The answer, no surprise, 

depends on a number of factors, including but not limited to the 

following: 

 

(1) Proficiency of the reader 

(2) Number of documents in the same cluster 

(3) Number of documents in the same class 

(4) Number of documents with the same categories 

(5) Number of documents the reader has time to read 

 

Given this, it is clear that learning represents a vast 

opportunity for additional research. In fact, because of the high rate 

of change in documents themselves (particularly web documents 

but extending to books and magazines which are almost 

universally available in streaming form), this is likely to remain the 

biggest opportunity for text archiving research for some time to 

come. 

Testing and Configuration 
We have provided herein the means to use a compressed 

proxy (summarized) representation of a document in place of the 

original document set. However, a concern around using such a 

compressed proxy set is that training, validation, and optimization 

is based on a quasi-experimental approach, rather than a proper 

experimental approach. A quasi-experiment is empirical—that is, 

control and experimental group assignment are a posteriori, so that 

it is used to estimate the causal impact of an experimental factor, 

but without random assignment. This means such an experiment is 

almost certain to be impacted by one or more confounding factors. 

We use an analogy here to illustrate this concern. There are 

usually ethical and/or structural exigencies which prevent a proper 



 

 

experimental design in many psychology-related research areas. 

One example is to test the impact of smoking on the development 

of another disorder such as lung cancer. It would be unethical to 

randomly assign participants in the experiment to either the control 

or one of the experimental (e.g. 0.5, 1, or 2 packs day) groups, 

since assignment to an experimental group would have 

considerable health risks (not to mention it may be difficult to 

enforce!). Thus, for this experiment, the assignments are after the 

fact, and the experiment designer does not have the ability or 

choice to change the independent variable. Thus, if only such a 

study were available, a cigarette manufacturer might argue that 

there may be a predisposition of people to smoke who already have 

a higher than average genetic risk of lung cancer. Some might 

argue that this is statistical apologetics, giving the cigarette 

manufacturers a loophole. It’s not—I’ll close that loophole shortly. 

However, from the standpoint of a quasi-experiment, it can 

reasonably be argued that a physiological lung defect such as 

weakened alveolar linings, dilated bronchi, etc., may make a 

person more likely to smoke: the smoking might constrict the 

bronchi to normal levels and so alleviate discomfort. The onus 

should then be on the cigarette manufacturers to establish that 

constricted bronchi lead to a higher lung cancer rate, but that only 

delays the creation of another confounding factor to keep the 

argument going. Fortunately, there are means of establishing a 

proper experiment a posteriori. Here is where identical (that is, 

monozygotic) twins are an absolute boon to psychological 

research. Because they are born with equivalent genetic 

information, if we find identical twins with different smoking 

behavior, we can act as if they were assigned to these different 

groups a priori (since from the genetic standpoint their assignment 

is random). This elevates the quasi-experiment to an experiment. 

Applying this to document analytics, we need to make sure 

that the summarization data (which is only quasi-experimental) can 

substitute for the full-text documents (which, with proper 

definition of training, validation, and testing sets, provide an 

experimental data set). Thus, proper equivalency comparisons (e.g. 

similarity of search query behavior on the original and compressed 

proxy corpora) are essential. 

Sample Application: Synonymic Search 
One of the most important text-based analytics is search. 

Functional measurements of search are relatively straightforward 

in some cases; for example, the use of search behavior to rank the 

efficacy of different translation engines, as mentioned above. 

Ranking the efficacy of different search engines, however, 

generally takes human-driven ground truthing. We used a 10-class, 

1000-document, human ground-truthed subset of the CNN corpus4 

for a simple test of search accuracy. Search queries based on the 

key class terms for each of the 10 classes were expanded using 2, 

4, 6, 8, 10, 12, 14, 16, 18, or 20 synonyms to augment the class-

specific search query (which consisted of the top 10 key terms of 

each class). For example, a search query for class “Travel” 

includes the term “Boat” which has synonyms such as “Ship”. 

Using the WordNet NLTK and the wup_similarity (meaning Wu-

Palmer Similarity), the similarity between “boat” and “ship” is 

0.91. All synonymic terms for each of the terms in the original 

search query have the Wu-Palmer similarity calculated, and the 

terms with the top 2, 4, 6, …, 20 weights are added to the search 

query. 

The terms of interest to this sample application include the 

following: 

 

1. Corpus Size—Sum of all Positives and Negatives—here 

it is a total of 1000 

2. Positives—search results returned to you (matches) 

3. Negatives—not returned to you as search results (non-

matches) 

4. True Positives (TP)—search results you find that are 

actually from the correct class 

5. False Positives (FP)—search results you find that are not 

actually from the correct class, but are wrongly returned 

from the search 

6. True Negatives (TN)—search results from the incorrect 

classes that are left out (correctly not returned as 

matches) 

7. False Negatives (FN)—search results from the correct 

class that are left out (not returned as matches, but 

should have been returned as matches) 

8. Precision (p)—percent of search results that are useful. 

The value p=TP/(TP+FP). 

9. Recall (r)—percent of all useful search results actually 

returned to you. The value r=TP/(TP+FN). 

10. Accuracy (a)—harmonic mean of precision and recall, 

and the recommended metric for optimization of the 

search—the value a= 2pr/(p+r). 

 

The latter three values—that is, p, r, and a—are shown in 

Table 1. Clearly, accuracy peaks in the range of 6-12 added 

synonyms (that is, expanding the 10-word search query to 16-22 

terms). Importantly, adding synonyms above 12 does not further 

increase accuracy. Also, including less than 6 synonyms results in 

lower accuracy. 

Table 1: Results for the synonymic search experiment 

#Synonyms Precision p Recall r Accuracy a 

0 0.744 0.390 0.512 

2 0.741 0.400 0.519 

4 0.783 0.470 0.588 

6 0.736 0.530 0.616 

8 0.684 0.540 0.603 

10 0.648 0.570 0.606 

12 0.622 0.610 0.616 

14 0.568 0.630 0.597 

16 0.485 0.650 0.556 

18 0.366 0.640 0.465 

20 0.300 0.620 0.404 

 

The specifics of how synonymic search will behave for 

corpora of different sizes and number of classes is unknown. 

However, the data shown here indicate that it can be a significant 

positive influence on document classification accuracy. The peak 

value, 0.616, is 0.104 higher than the value when using no 

synonyms, 0.512. This is a 21.3% reduction in error rate. 

Discussion and Conclusions 
In this paper, we have highlighted some of the exciting ways 

in which corpora can be enhanced—and optimized—to provide 

reuse, new access points, and improved behavior in aggregate. This 

includes the use of large corpora for learning, which is the current 

area most needing of additional research. One largish corpus, the 

CNN corpus, was used to illustrate the functional use of synonyms 

to improve search accuracy. 
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